Yang and Parvin: Harmonic Cut and Regularized Centroid Transform for L Ocalization of Subcellular Structure
نویسندگان
چکیده
Two novel computational techniques, harmonic cut and regularized centroid transform, are developed for segmentation of cells and their corresponding substructures observed with an epi-fluorescence microscope. Harmonic cut detects small regions that correspond to small subcellular structures. These regions also affect the accuracy of the overall segmentation. They are detected, removed, and interpolated to ensure continuity within each region. We show that interpolation within each region (subcellular compartment) is equivalent to solving the Laplace equation on a multi-connected domain with irregular boundaries. The second technique, referred to as the regularized centroid transform, aims to separate touching compartments. This is achieved by adopting a quadratic model for the shape of the object and relaxing it for final segmentation.
منابع مشابه
Harmonic Modeling of Inrush Current in Core Type Power Transformers Using Hartley Transform
This paper presents a new method for evaluation and simulation of inrush current in various transformers using operational matrices and Hartley transform. Unlike most of the previous works, time and frequency domain calculations are conducted simultaneously. Mathematical equations are first represented to compute the inrush current based on reiteration and then Hartley transform is used to stud...
متن کاملYang-Laplace transform method Volterra and Abel's integro-differential equations of fractional order
This study outlines the local fractional integro-differential equations carried out by the local fractional calculus. The analytical solutions within local fractional Volterra and Abel’s integral equations via the Yang-Laplace transform are discussed. Some illustrative examples will be discussed. The obtained results show the simplicity and efficiency of the present technique with application t...
متن کاملThe analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform
In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...
متن کاملA unified theoretical harmonic analysis approach to the cyclic wavelet transform (CWT) for periodic signals of prime dimensions
The article introduces cyclic dilation groups and finite affine groups for prime integers, and as an application of this theory it presents a unified group theoretical approach for the cyclic wavelet transform (CWT) of prime dimensional periodic signals.
متن کاملHarmonic Response of Pile Groups to Dynamic Loading
A completely general method of analysis for three-dimensional raked piles under harmonic excitation is discussed. The piles have been represented by a three-dimensional frame structure and the soil has been represented by a boundary element discretization scheme. A computer program has been written which carries out this analysis and produces a group stiffness matrix that can be included as a f...
متن کامل